从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决的解题方法叫分析法。
用分析法解应用题时,如果解题所需要的两个条件,(或其中的一个条件)是未知的,就要分别求解找出这两个(或一个)条件,一直到所需要的条件都是已知的为止。
分析法适于解答数量关系比较复杂的应用题。
例1
玩具厂计划每天生产件玩具,已经生产了6天,共生产件。问平均每天超过计划多少件?(适于三年级程度)
解:
这道题是求平均每天超过计划多少件。要求平均每天超过计划多少件,必须具备两个条件(图5-1):①实际每天生产多少件;②计划每天生产多少件。
计划每天生产件是已知条件。实际每天生产多少件,题中没有直接告诉,需要求出来。
要求实际每天生产多少件,必须具备两个条件(图5-1):①一共生产了多少件;②已经生产了多少天。这两个条件都是已知的:①一共生产了件;②已经生产了6天。
分析到这里,问题就得到解决了。
此题分步列式计算就是:
(1)实际每天生产多少件?
÷6=(件)
(2)平均每天超过计划多少件?
-=10(件)
综合算式:
÷6-
=-
=10(件)
例2
四月上旬,甲车间制造了个机器零件,乙车间制造的机器零件是甲车间的2倍。四月上旬两个车间共制造多少个机器零件?(适于三年级程度)
解:要求两个车间共制造多少个机器零件,必须具备两个条件(图5-2):①甲车间制造多少个零件;②乙车间制造多少个零件。已知甲车间制造个零件,乙车间制造多少个零件未知。
下面需要把“乙车间制造多少个零件”作为一个问题,并找出解答这个问题所需要的两个条件。
这两个条件(图5-2)是:①甲车间制造多少个零件;②乙车间制造的零件是甲车间的几倍。这两个条件都是已知的:①甲车间制造个,乙车间制造的零件数是甲车间的2倍。
分析到此,问题就得到解决了。
此题分步列式计算就是:
(1)乙车间制造零件多少个?
×2=(个)
(2)两个车间共制造零件多少个?
+=(个)
综合算式:
+×2
=+
=(个)
答略。
例3
某车间要生产个机器零件,已经工作了3天,平均每天生产20个。剩下的如果每天生产30个,还需要几天才能完成?(适于四年级程度)
解:
要求还需要几天才能完成,必须具备两个条件(图5-3):①还剩下多少个零件;②每天生产多少个零件。在这两个条件中,每天生产30个零件是已知条件,还剩多少个零件未知。
先把“还剩多少个零件”作为一个问题,并找出解答这个问题所需要的两个条件。
要算出还剩下多少个零件,必须具备的两个条件(图5-3)是:①要生产多少个零件;②已经生产了多少个零件。要生产个零件是已知条件,已经生产多少个零件未知。
然后把“已经生产多少个零件”作为一个问题,并找出解答这个问题所需要的两个条件。
要算出已生产多少个零件,必须知道的两个条件(图5-3)是:①每天生产多少个零件;②生产了几天。这两个条件题中都已经给出:每天生产20个零件,生产了3天。
分析到此,问题就得到解决。
上面的思考过程,分步列式计算就是:
(1)已经生产了多少个零件?
20×3=60(个)
(2)剩下多少个零件?
-60=(个)
(3)还要几天才能完成?
÷30=4(天)
综合算式:
(-20×3)÷30
=(-60)÷30
=÷30
=4(天)
答略。